31 research outputs found

    Using a One Health approach to assess the impact of parasitic disease in livestock: how does it add value?

    Get PDF
    Human population increases, with greater food demands, have resulted in a rapid evolution of livestock food systems, leading to changes in land and water use. The scale of global livestock systems mean that changes in animal health status, particularly in parasite levels, have impacts that go beyond farm and sector levels. To quantify the true impact of parasites in livestock, frameworks that look at both resources and services valued in markets and those that have no true market value are required. Mitigating the effects of parasitic disease in livestock will not only increase productivity, but also improve animal welfare and human health, whilst reducing the environmental burden of livestock production systems. To measure these potential benefits, a One Health approach is needed. This paper discusses the types of methods and the data collection tools needed for a more holistic perspective and provides a framework with its application to coccidiosis in poultry. To build a body of knowledge that allows the ranking of parasite diseases in a wider animal health setting, such One Health frameworks need to be applied more frequently and with rigour. The outcome will improve the allocation of resources to critical constraints on parasite management

    Genomic analysis of clostridioides difficile recovered from horses in Western Australia

    Get PDF
    Clostridioides difficile poses an ongoing threat as a cause of gastrointestinal disease in humans and animals. Traditionally considered a human healthcare-related disease, increases in community-associated C. difficile infection (CDI) and growing evidence of inter-species transmission suggest a wider perspective is required for CDI control. In horses, C. difficile is a major cause of diarrhoea and life-threatening colitis. This study aimed to better understand the epidemiology of CDI in Australian horses and provide insights into the relationships between horse, human and environmental strains. A total of 752 faecal samples from 387 Western Australian horses were collected. C. difficile was isolated from 104 (30.9%) horses without gastrointestinal signs and 19 (37.8%) with gastrointestinal signs. Of these, 68 (55.3%) harboured one or more toxigenic strains, including C. difficile PCR ribotypes (RTs) 012 (n = 14), 014/020 (n = 10) and 087 (n = 7), all prominent in human infection. Whole-genome analysis of 45 strains identified a phylogenetic cluster of 10 closely related C. difficile RT 012 strains of equine, human and environmental origin (0–62 SNP differences; average 23), indicating recent shared ancestry. Evidence of possible clonal inter-species transmission or common-source exposure was identified for a subgroup of three horse and one human isolates, highlighting the need for a One Health approach to C. difficile surveillance

    Estimating the burden of multiple endemic diseases and health conditions using Bayes’ Theorem: A conditional probability model applied to UK dairy cattle

    Full text link
    The Global Burden of Animal Diseases (GBADs) is an international collaboration aiming, in part, to measure and improve societal outcomes from livestock. One GBADs objective is to estimate the economic impact of endemic diseases in livestock. However, if individual disease impact estimates are linearly aggregated without consideration for associations among diseases, there is the potential to double count impacts, overestimating the total burden. Accordingly, the authors propose a method to adjust an array of individual disease impact estimates so that they may be aggregated without overlap. Using Bayes’ Theorem, conditional probabilities were derived from inter-disease odds ratios in the literature. These conditional probabilities were used to calculate the excess probability of disease among animals with associated conditions, or the probability of disease overlap given the odds of coinfection, which were then used to adjust disease impact estimates so that they may be aggregated. The aggregate impacts, or the yield, fertility, and mortality gaps due to disease, were then attributed and valued, generating disease-specific losses. The approach was illustrated using an example dairy cattle system with input values and supporting parameters from the UK, with 13 diseases and health conditions endemic to UK dairy cattle: cystic ovary, disease caused by gastrointestinal nematodes, displaced abomasum, dystocia, fasciolosis, lameness, mastitis, metritis, milk fever, neosporosis, paratuberculosis, retained placenta, and subclinical ketosis. The diseases and conditions modelled resulted in total adjusted losses of £ 404/cow/year, equivalent to herd-level losses of £ 60,000/year. Unadjusted aggregation methods suggested losses 14–61% greater. Although lameness was identified as the costliest condition (28% of total losses), variations in the prevalence of fasciolosis, neosporosis, and paratuberculosis (only a combined 22% of total losses) were nearly as impactful individually as variations in the prevalence of lameness. The results suggest that from a disease control policy perspective, the costliness of a disease may not always be the best indicator of the investment its control warrants; the costliness rankings varied across approaches and total losses were found to be surprisingly sensitive to variations in the prevalence of relatively uncostly diseases. This approach allows for disease impact estimates to be aggregated without double counting. It can be applied to any livestock system in any region with any set of endemic diseases, and can be updated as new prevalence, impact, and disease association data become available. This approach also provides researchers and policymakers an alternative tool to rank prevention priorities

    Profiling Detection and Classification of Lameness Methods in British Dairy Cattle Research: A Systematic Review and Meta-Analysis

    Get PDF
    Lameness is a serious concern in the dairy sector, reflecting its high incidence and impact on animal welfare and productivity. Research has provided figures on its frequency using different methodologies, making it difficult to compare results and hindering farm-level decision-making. The study's objectives were to determine the frequency levels of lameness in British dairy cattle through a meta-analysis approach, and to understand the chronological patterns of how lameness cases are detected and classified in scientific research. A systematic review was conducted using PRISMA-P guidelines for article selection. Random-effects models estimated the pooled frequency measure of lameness with heterogeneity managed through subgroup analysis and meta-regression. Sixty-eight papers were identified, 50 included prevalence and 36 incidence data. The pooled prevalence of lameness in British dairy cattle was estimated at 29.5% (95% CI 26.7–32.4%) whilst all-cause lameness incidence rate indicated 30.9 cases of lameness per 100 cow-years (95% CI 24.5–37.9). The pooled cause-specific lameness incidence rate per 100 cow-years was 66.1 (95% CI 24.1–128.8) for white line disease, 53.2 (95% CI 20.5–101.2) for sole ulcer, 53.6 (95% CI 19.2–105.34) for digital dermatitis, with 51.9 (95% CI 9.3–129.2) attributable to other lameness-related lesions. Heterogeneity levels remained high. Sixty-nine papers contributed to a chronological overview of lameness data source. Although the AHDB Dairy mobility scoring system (MSS) was launched in the UK in 2008 and adopted shortly after by the British Dairy sector as the standard tool for assessing lameness, other methods are used depending on the investigator. Automated lameness detection systems may offer a solution for the subjective nature of MSSs, yet it was utilized in one study only. Despite the recognition of under-reporting of lameness from farm records 22 (31.9%) studies used this data source. The diversity of lameness data collection methods and sources was a key finding. It limits the understanding of lameness burden and the refinement of policy making for lameness. Standardizing case definition and research methods would improve knowledge of and ability to manage lameness. Regardless of the measurement method lameness in British dairy cattle is high

    Methodological choices in brucellosis burden of disease assessments: A systematic review

    Get PDF
    Background Foodborne and zoonotic diseases such as brucellosis present many challenges to public health and economic welfare. Increasingly, researchers and public health institutes use disability-adjusted life years (DALYs) to generate a comprehensive comparison of the population health impact of these conditions. DALYs calculations, however, entail a number of methodological choices and assumptions, with data gaps and uncertainties to accommodate. Thisreview identifies existing brucellosis burden of disease studies and analyzes their methodological choices, assumptions, and uncertainties. It supports the Global Burden of Animal Diseases programme in the development of a systematic methodology to describe the impact of animal diseases on society, including human health. Methods/Principal findings A systematic search for brucellosis burden of disease calculations was conducted in pre-selected international and grey literature databases. Using a standardized reporting framework, we evaluated each estimate on a variety of key methodological assumptions necessary to compute a DALY. Fourteen studies satisfied the inclusion criteria (human brucellosis and quantification of DALYs). One study reported estimates at the global level, the rest were national or subnational assessments. Data regarding different methodological choices were extracted, including detailed assessments of the adopted disease models. Most studies retrieved brucellosis epidemiological data from administrative registries. Incidence data were often estimated on the basis of laboratory-confirmed tests. Not all studies included mortality estimates (Years of Life Lost) in their assessments due to lack of data or the assumption that brucellosis is not a fatal disease. Only two studies used a model with variable health states and corresponding disability weights. The rest used a simplified singular health state approach. Wide variation was seen in the duration chosen for brucellosis, ranging from 2 weeks to 4.5 years, irrespective of the whether a chronic state was included. Conclusion Available brucellosis burden of disease assessments vary widely in their methodology and assumptions. Further research is needed to better characterize the clinical course of brucellosis and to estimate case-fatality rates. Additionally, reporting of methodological choices should be improved to enhance transparency and comparability of estimates. These steps will increase the value of these estimates for policy makers

    Socio-economic impact of Foot-and-Mouth Disease outbreaks and control measures:An analysis of Mongolian outbreaks in 2017

    Get PDF
    Mongolia is a large landlocked country in central Asia and has one of the highest per capita livestock ratios in the world. During 2017 reported Foot and Mouth disease (FMD) outbreaks in Mongolia increased considerably, prompting widespread disease control measures. This study estimates the socio‐economic impact of FMD and subsequent control measures on Mongolian herders. The analysis encompassed quantification of the impact on subsistence farmers’ livelihoods and food security and estimation of the national level gross losses due to reaction and expenditure during 2017. Data were collected from 112 herders across eight Provinces that reported disease. Seventy of these herders had cases of FMD, while 42 did not have FMD in their animals but were within quarantine zones. Overall, 86/112 herders reported not drinking milk for a period of time and 38/112 reduced their meat consumption. Furthermore, 55 herders (49.1%) had to borrow money to buy food, medicines and/or pay bills or bank loans. Among herders with FMD cases, the median attack rate was 31.7%, 3.8% and 0.59% in cattle, sheep and goats respectively, with important differences across Provinces. Herders with clinical cases before the winter had higher odds of reporting a reduction in their meat consumption. National level gross losses due to FMD in 2017 were estimated using government data. The estimate of gross economic loss was 18.4 billion Mongolian‐tugriks (US$7.35 million) which equates to approximately 0.65% of the Mongolian GDP. The FMD outbreaks combined with current control measures has negatively impacted herders’ livelihoods (including herders with and without cases of FMD) which is likely to reduce stakeholder advocacy. Possible strategies that could be employed to ameliorate the negative effects of the current control policy were identified. The findings and approach are relevant to other FMD endemic regions aiming to control the disease

    A multifaceted risk model of brucellosis at the human-animal interface in Egypt

    Get PDF
    Brucellosis is a highly contagious zoonosis affecting humans and a wide range of domesticated and wild animal species. An important element for effective disease containment is to improve knowledge, attitudes and practices (KAP) of afflicted communities. This study aimed to assess the KAP related to brucellosis at the human‐animal interface in an endemic area of Egypt and to identify the risk factors for human infection. A matched case‐control study was conducted at the central fever hospitals located in six governorates in northen Egypt. Face‐to‐face interviews with cases and controls were conducted using a structured questionnaire. In total, 40.7% of the participants owned farm animals in their households. The overall mean practice score regarding animal husbandry, processing and consumption of milk and dairy products was significantly lower among cases compared to controls [‐12.7±18.1 vs 0.68±14.2 respectively; p< 0.001]. Perceived barriers for notification of animal infection/abortion were predominate among cases and positively correlated with participants’ education. The predictors of having brucellosis infection were consumption of unpasteurized milk or raw dairy products and practicing animal husbandry. Applying protective measures against infection significantly reduced its risk. A model predicting risk factors for brucellosis among those who own animal showed that frequent abortions per animal increased the chance for brucellosis infection among human cases by 50‐fold (95% CI: 8.8 – 276.9), whereas the use of protective measures in animal care reduced the odds [OR= 0.11 (95% CI: 0.03 – 0.45)]. In conclusion, consumption of unprocessed dairy products was equally important as contact with infected/aborted animals as major risk factors for Brucella spp. infection among humans in Egypt. There is poor knowledge, negative attitudes and risky behaviors among villagers which can perpetuate the risk of brucellosis transmission at the human‐animal interface. This supports the need for integrating health education into the national brucellosis control program
    corecore